2,691 research outputs found

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    Dense Regular Packings of Irregular Non-Convex Particles

    Full text link
    We present a new numerical scheme to study systems of non-convex, irregular, and punctured particles in an efficient manner. We employ this method to analyze regular packings of odd-shaped bodies, not only from a nanoparticle but also both from a computational geometry perspective. Besides determining close-packed structures for many shapes, we also discover a new denser configuration for Truncated Tetrahedra. Moreover, we consider recently synthesized nanoparticles and colloids, where we focus on the excluded volume interactions, to show the applicability of our method in the investigation of their crystal structures and phase behavior. Extensions to the presented scheme include the incorporation of soft particle-particle interactions, the study of quasicrystalline systems, and random packings.Comment: 4 pages, 3 figure

    THE ROLE OF MARKET ADVISORY SERVICES IN CROP MARKETING AND RISK MANAGEMENT: A PRELIMINARY REPORT OF SURVEY RESULTS

    Get PDF
    The purpose of this report is to provide a preliminary summary of the results of a survey designed to help answer the questions about subscriber use of market advisory services. Importantly, this research is a cooperative partnership between the University of Illinois and the Data Transmission Network. The survey participants are commercial producers of major grain, oilseed and fiber crops, representing important agricultural areas of the US. The survey has three broad objectives, including 1) how US producers perceive the riskiness of various aspects of farming; 2) how US producers manage farm business risk, and 3) how US producers select and use market advisory services.Marketing, Risk and Uncertainty,

    An Algebraic Framework for Discrete Tomography: Revealing the Structure of Dependencies

    Full text link
    Discrete tomography is concerned with the reconstruction of images that are defined on a discrete set of lattice points from their projections in several directions. The range of values that can be assigned to each lattice point is typically a small discrete set. In this paper we present a framework for studying these problems from an algebraic perspective, based on Ring Theory and Commutative Algebra. A principal advantage of this abstract setting is that a vast body of existing theory becomes accessible for solving Discrete Tomography problems. We provide proofs of several new results on the structure of dependencies between projections, including a discrete analogon of the well-known Helgason-Ludwig consistency conditions from continuous tomography.Comment: 20 pages, 1 figure, updated to reflect reader inpu

    A Triangular Tessellation Scheme for the Adsorption Free Energy at the Liquid-Liquid Interface: Towards Non-Convex Patterned Colloids

    Full text link
    We introduce a new numerical technique, namely triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle non-convex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semi-analytic approaches, especially when it comes to generality and applicability.Comment: 21 pages, 11 figures, 0 table

    Methodological and empirical progress and challenges in integrated assessment of agricultural systems and policies

    Get PDF
    In this contribution we first present a methodology for integrated assessment of agricultural systems (SEAMLESS Integrated Framework), illustrate its application in an integrated assessment of high commodity prices and then discuss its flexibility and limitations. From there we take a broader view and reflect on key scientific and empirical questions with respect to the development of research tools for the integrated assessment of agricultural systems.agricultural systems, integrated assessment, modelling, Agricultural and Food Policy, Farm Management,

    Critical Kauffman networks under deterministic asynchronous update

    Full text link
    We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods may become very long when delays are not integer multiples of the basic update step.Comment: 8 pages, 3 figures, submitted to a journa
    • …
    corecore